
Algor ithm: A Simpler Macro Processor

WILLIAM A. WARD, JR.
Computer Sciences Corporation

Macro processors have been in the computing tool chest since the late 1950s. Their use, though perhaps not
what it was in the heyday of assembly language programming, is still widespread. In the past, producing a
full-featured macro processor has required significant effort, similar to that required to implement the front-
end to a compiler augmented by appropriate text substitution capabilities. The tool described here adopts a
different approach. The text containing macro definitions and substitutions is, in a sense, ‘‘compiled’’ to
produce a program, and this program must then be executed to produce the final output.

Categories and Subject Descriptors: D.2.3 [Software Engineering]: Coding Tools and Techniques—Program
editors; D.3.2 [Programming Languages]: Language Classifications—Macro and assembly languages; D.3.4
[Programming Languages]: Processors—Preprocessors;

General Terms: Algorithms

Additional Key Words and Phrases: Awk, portable, simple

1. INTRODUCTION

Macro processors (MPs) have been recognized as useful tools since the late
1950s [Greenwald 1959]. Before the widespread use of high-level programming
languages, MPs were indispensable aids provided by many assemblers [Kent 1969].
Later, MPs proved useful in the implementation of high-level programming languages
themselves; the PL/I preprocessor [IBM 1981], the C preprocessorcpp, and
MAC-2 [Tomassini 1990] for Modula-2 are examples of this. Rational FORTRAN
(Ratfor), a derivative of FORTRAN with additional features to facilitate structured
programming, was implemented by using an MP as a preprocessor that allowed the use
of if-else, for, and while control structures by defining them as macros [Ghezzi and
Jazayeri 1987, p. 243]. The Algorithm 622 MP was developed to assist in the
translation of the ELLPACK interface language into FORTRAN [Rice, Ribbens, and
Ward 1984a]. [Rice, Ribbens, and Ward 1984b]

MPs may also play a significant role as tools to improve software developer
productivity. Sometimes it is necessary to maintain multiple versions of the same
program with minor variations between the versions; this is necessary when there are

Author’s address: Computer Sciences Corporation, P.O. Box 820186, Vicksburg, MS 39182.
Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage, the copyright notice, the
title of the publication, and its date appear, and notice is given that copying is by permission of ACM, Inc. To
copy otherwise, to republish, to post on servers, to redistribute to lists, requires prior specific permission and/or
a fee.
© 1999 ACM

ACM Transactions on Mathematical Software

2 • William A. Ward, Jr.

multiple hardware targets, when moving a code from one platform to another, and when
the developer is considering alternative algorithms. This simple type of configuration
management can generally be accomplished using an MP with a conditional statement.
A recent example of this is seen in the use of Algorithm 622 to port geophysical
software from a supercomputer to various UNIX workstations [Levin 1998]. In fact, the
development of the MP described here was partially motivated by the need to perform
this kind of version control on a numerical integration code.

In summary, MPs historically have been used both as software development tools and
productivity aids and as important components for providing a higher level of
abstraction in the langauge translation process. Further information on MPs may be
found in Brown [1974] Campbell-Kelly [1973], and Cole [1976].

2. IMPLEMENTATION

2.1 Approach

MPs accept two types of source lines.Te xt linesare processed for macro substitution
and are echoed to the output.Directive lines, or directives, on the other hand, actually
constitute a programming language; they define macros and control program flow and
are not echoed to the output. Providing for macro definition and substitution requires
software for symbol table management, dynamic storage allocation, and string
manipulation. Processing the command language requires a parser and interpreter, the
complexity of which depends on the command language.

That a software version control problem motivated the development of this MP has
already been noted. This problem had grown in complexity until it became apparent
that neithercpp nor m4 would suffice and that the best solution would be an MP
whose command language was a fully-fledged programming language. Unfortunately,
the effort required to produce such a tool from scratch would be similar to that for a
compiler front-end plus an interpreter and would possibly be greater than that for the
development project in which it would be used.

The solution to this dilemma was to define the directive language to be an existing
language (awk) and then to use a two-pass approach. The first pass converts every
input line to an awk statement, thus producing an awk program. In the second pass, the
awk language processor executes the awk program to produce the final output.
Appropriately, the program to implement the first pass is also written in awk. Such an
approach was proposed by Brown [1974, pp. 77-79] who suggested PL/I as the
embedded directive language. The simpler MP described here was christenedm5
(m4++).

2.2 Why Use Awk?

There are several scripting languages that could have been used to implementm5,
including Perl and Python. In fact, it is easy to see how one language could have been

ACM Transactions on Mathematical Software

A Simpler Macro Processor • 3

used for the translator, and another for the embedded directive language. However, this
author believes that awk has some real advantages, as noted below (these are admittedly
opinions, so take them with a grain of salt).

• Convenience. awk was bundled with the locally installed operating system;
obviously there are other freely available scripting languages, but they were not
installed, and would have had to be fetched from a remote site and compiled. Ifm5
is to be installed on any UNIX system, there is a high probability thatawk is already
installed.

• Suitability. Awk provides many features useful to the MP developer and user,
including a concatenation operator, associative arrays, dynamic storage management
for variable length strings, dynamic type conversion, and a number of useful built-in
string handling functions.

• Simplicity. Awk arguably has a simpler syntax than, say, Perl and it is a smaller,
more compact language.

• Learnability. Partially as a consequence of 2., and partially because its syntax is
strongly reminiscent of C, yet without some of C’s annoyances (semicolons and
declarations, for instance, are really not crucial to a MP language).

3. USAGE

3.1 Over view

The program that performs the first pass noted above iscalled them5 translatorand is
namedm5.awk. The input to the translator may be either standard input or one or
more files listed on the command line. An input line with the directive prefix character
(# by default) in column 1 is treated as a directive statement in the MP directive
language (awk). All other input lines are processed as text lines. Simple macros are
created using awk assignment statements and their values referenced using the
substitution prefix character ($ by default). The backslash (\) is the escape character;
its presence forces the next character to literally appear in the output. This is most
useful when forcing the appearance of the directive prefix character, the substitution
prefix character, and the escape character itself.

3.2 Macro Substitution

All input lines are scanned for macro references that are indicated by the substitution
prefix character. Assuming the default value of that character, macro references may be
of the form $var, $(var), $(expr), $[str], $var[expr], or $func(args). These are replaced
by an awk variable, awk variable, awk expression, awk array reference to the special
array M[] , regular awk array reference, or awk function call, respectively. These are,
in effect, macros. The MP translator checks for proper nesting of parentheses and
double quotes when translating $(expr) and $func(args) macros, and checks for proper

ACM Transactions on Mathematical Software

4 • William A. Ward, Jr.

nesting of square brackets and double quotes when translating $[expr] and $var[expr]
macros. The substitution prefix character indicates a a macro reference unless it is (i)
escaped (e.g.,\$abc), (ii) followed by a character other than A-Z, a-z, (, or [(e.g.,
$@), or (iii) inside a macro reference (e.g.,$($abc) ; probably an error).

An understanding of the implementation of macro substitution will help in its proper
usage. When a text line is encountered, it is scanned for macros, embedded in an awk
print statement, and copied to the output program. For example, the input line

The quick $fox jumped over the lazy $dog.

is transformed into

print "The quick " fox " jumped over the lazy " dog "."

Obviously the use of this transformation technique relies completely on the presence of
the awk concatenation operator (one or more blanks).

3.3 Macros Containing Macros

As already noted, a macro reference inside another macro reference will not result in
substitution and will probably cause an awk execution-time error. Furthermore, a
substitution prefix character in the substituted string is also generally not significant
because the substitution prefix character is detected at translation time, and macro
values are assigned at execution time. However, macro references of the form $[expr]
provide a simple nested referencing capability. For example, if$[abc] is in a text
line, or in a directive line and not on the left hand side of an assignment statement, it is
replaced byeval(M["abc"]) /. When the output program is executed, them5
runtime routineev al()/ substitutes the value ofM["abc"] examining it for further
macro references of the form $[str] (where "str" denotes an arbitrary string). If one is
found, substitution and scanning proceed recursively. Function type macro references
may result in references to other macros, thus providing an additional form of nested
referencing.

3.4 Directive Lines

Except for the include directive, when a directive line is detected, the directive prefix is
removed, the line is scanned for macros, and then the line is copied to the output
program (as distinct from the final output). Any valid awk construct, including the
function statement, is allowed in a directive line. Further information on writing awk
programs may be found in Aho, Kernighan, and Weinberger [1988], Dougherty and
Robbins [1997], and Robbins [1997].

3.5 Include Directive

A single non-awk directive has been provided: the include directive. Assuming that #
is the directive prefix, #include(filename) directs the MP translator to immediately read

ACM Transactions on Mathematical Software

A Simpler Macro Processor • 5

from the indicated file, processing lines from it in the normal manner. This processing
mode makes the include directive the only type of directive to take effect at translation
time. Nested includes are allowed. Include directives must appear on a line by
themselves. More elaborate types of file processing may be directly programmed using
appropriate awk statements in the input file.

3.6 Main Program and Functions

The MP translator builds the resulting awk program in one of two ways, depending on
the form of the first input line. If that line begins with "function", it is assumed that
the user is providing one or more functions, including the function "main" required by
m5. If the first line does not begin with "function", then the entire input file is
translated into awk statements that are placed inside "main". If some input lines are
inside functions, and others are not, awk will will detect this and complain. The MP
by design has little awareness of the syntax of directive lines (awk statements), and as a
consequence syntax errors in directive lines are not detected until the output program is
executed.

3.7 Output

Finally, unless the -c (compile only) option is specified on the command line, the
output program is executed to produce the final output (directed by default to standard
output). The version ofawk specified in ARGV[0] (a built-in awk variable containing
the command name) is used to execute the program. If ARGV[0] is null,awk is used.

4. EXAMPLE

Understanding this example requires recognition that macro substitution is a two-step
process: (i) the input text is translated into an output awk program, and (ii) the awk
program is executed to produce the final output with the macro substitutions actually
accomplished. The examples below illustrate this process. # and $ are assumed to be
the directive and substitution prefix characters. This example was successfully executed
using awk on a Cray C90 running UNICOS 10.0.0.3,gawk on a Gateway E-3200
runing SuSE Linux Version 6.0, andnawk on a Sun Ultra 2 Model 2200 running
Solaris 2.5.1.

4.1 Input Te xt

#function main() {

Example 1: Simple Substitution

br = "brown"

The quick $br fox.

Example 2: Substitution inside a String

ACM Transactions on Mathematical Software

6 • William A. Ward, Jr.

r = "row"

The quick b$(r)n fox.

Example 3: Expression Substitution

a = 4

b = 3

The quick $(2*a + b) foxes.

Example 4: Macros References inside a Macro

$[fox] = "\$[q] \$[b] \$[f]"

$[q] = "quick"

$[b] = "brown"

$[f] = "fox"

The $[fox].

Example 5: Array Reference Substitution

x[7] = "brown"

b = 3

The quick $x[2*b+1] fox.

Example 6: Function Reference Substitution

--

The quick $color(1,2) fox.

Example 7: Substitution of Special Characters

\# The \$ quick \\ brown $# fox. $$

#}

#include(testincl.m5)

4.2 Included File testincl.m5

#function color(i,j) {

The lazy dog.

if (i == j)

return "blue"

else

return "brown"

#}

ACM Transactions on Mathematical Software

A Simpler Macro Processor • 7

4.3 Output Program

function main() {

print

print " Example 1: Simple Substitution"

print " ------------------------------"

br = "brown"

print " The quick " br " fox."

print

print " Example 2: Substitution inside a String"

print " ---------------------------------------"

r = "row"

print " The quick b" r "n fox."

print

print " Example 3: Expression Substitution"

print " ----------------------------------"

a = 4

b = 3

print " The quick " 2*a + b " foxes."

print

print " Example 4: Macros References inside a Macro"

print " ---"

M["fox"] = "$[q] $[b] $[f]"

M["q"] = "quick"

M["b"] = "brown"

M["f"] = "fox"

print " The " eval(M["fox"]) "."

print

print " Example 5: Array Reference Substitution"

print " ---------------------------------------"

x[7] = "brown"

b = 3

print " The quick " x[2*b+1] " fox."

print

print " Example 6: Function Reference Substitution"

print " --"

print " The quick " color(1,2) " fox."

print

print " Example 7: Substitution of Special Characters"

print " ---"

print "\# The \$ quick \\ brown $# fox. $$"

}

function color(i,j) {

print " The lazy dog."

if (i == j)

return "blue"

else

ACM Transactions on Mathematical Software

8 • William A. Ward, Jr.

return "brown"

}

function eval(inp ,isplb,irb,out,name) {

splb = SP "["

out = ""

while(isplb = index(inp, splb)) {

irb = index(inp, "]")

if (irb == 0) {

out = out substr(inp,1,isplb+1)

inp = substr(inp, isplb+2)

} else {

name = substr(inp, isplb+2, irb-isplb-2)

sub(/ˆ +/, "", name)

sub(/ +$/, "", name)

out = out substr(inp,1,isplb-1) eval(M[name])

inp = substr(inp, irb+1)

}

}

out = out inp

return out

}

BEGIN {

SP = "$"

main()

exit

}

4.4 Final Output

Example 1: Simple Substitution

The quick brown fox.

Example 2: Substitution inside a String

The quick brown fox.

Example 3: Expression Substitution

The quick 11 foxes.

ACM Transactions on Mathematical Software

A Simpler Macro Processor • 9

Example 4: Macros References inside a Macro

The quick brown fox.

Example 5: Array Reference Substitution

The quick brown fox.

Example 6: Function Reference Substitution

--

The lazy dog.

The quick brown fox.

Example 7: Substitution of Special Characters

The $ quick \ brown $# fox. $$

5. CONCLUDING REMARKS

The implementation approach just described has several advantages:

• The implementation is short and simple because a fully-fledged parser is not
required. The relative brevity of the code inherently reduces code complexity and
improves maintainability.

• The use of an existing and thoroughly tested language processor (awk) greatly
enhancesm5’s reliability.

• In contrast to m4, cpp, Algorithm 622, and many other MPs,m5 contains a
complete high-level language (awk), including conditionals, loops, and functions with
arguments.

• Awk is widely used and is similar to C; this enhancesm5’s accessibility.

• Awk is distributed with the UNIX operating system as a standard utility. There are
at least three versions ofawk for which source code is freely available, and at least
two commercial versions. Versions exist for MS-DOS, OS/2, Windows 95, and
Windows NT [Dougherty and Robbins 1997, pp. 255-277]. This wide availability
promotes the portability ofm5.

Several possible enhancements tom5 are under consideration, including
improvement of the dynamic macro substitution capability, translation to C to improve
performance, and reimplementation in Perl and Python to enhance the directive
language capabilities.

ACM Transactions on Mathematical Software

10 • William A. Ward, Jr.

ACKNOWLEDGEMENTS

The author gladly recognizes the inspiration provided for this work by Dr. John R. Rice
of Purdue University and dedicates it to him on the occasion of his 65th birthday.

The development and initial testing of this algorithm was performed on equipment
donated by Sun Microsystems under Academic Equipment Grant #EDUD-
NAFO-970211. The author gratefully acknowledges Sun’s generosity.

This paper is published in the interest of scientific and technical information
interchange; the ideas and findings contained herein should not be construed as an
official position of the U.S. Army. Use of any trademarks in this study is not intended
in any way to infringe on the rights of the trademark holder.

REFERENCES

AHO, ALFRED V., KERNIGHAN, BRIAN W., AND WEINBERGER, PETER J. 1988.The
AWK Pro gramming Language, Addison-Wesley.

BRO WN, P. J. 1974.Macro Processors and Techniques for Portable Software, John
Wiley & Sons.

CAMPBELL-KELLY, M. 1973.An Introduction to Macros, Macdonald.
COLE, A. J. 1976.Macro Processors, Cambridge University Press.
DOUGHERTY, DALE AND ROBBINS, ARNOLD 1997.sed & awk, O’Reilly & Associates.
GHEZZI, CARLO AND JAZAYERI, MEHDI 1987. Programming Language Concepts, John

Wiley & Sons.
GREENWALD, I. 1959. A technique for handling macro instructions,Comm. ACM, 2/11

(Nov.), 21-22.
IBM 1981. OS and DOS PL/I Language Reference Manual, GC26-3977-0, IBM

Programming Publishing.
KENT, W. 1969. Assembler language macro processing: a tutorial oriented towards the

IBM 360, Computing Surveys, 1/4 (Dec.), 183-196.
LEVIN, STEWART A. 1998. Remark on algorithm 622: a simple macro processor,ACM

Tr ans. Math. Softw., 24/3 (Sep.), 336-340.
RICE, J. R., RIBBENS, C. J., AND WARD, W. A. 1984. The template processor, In

Solving Elliptic Problems Using ELLPACK, by John R. Rice and Ronald F. Boisvert,
ed., Springer-Verlag, 469-484.

RICE, JOHN R., RIBBENS, CALVIN , AND WARD, WILLIAM A. 1984. Algorithm 622: A
simple macro processor,ACM Trans. Math. Softw., 10/4 (Dec.), 410-416.

ROBBINS, ARNOLD 1997.Effective AWK Programming, Specialized System Consultants.
TOMASSINI, MARCO 1990. MAC2—a macro processor for Modula-2,J. of Pascal, Ada

& Modula-2, 9/1 (Jan.), 28.

ACM Transactions on Mathematical Software

